
Arc
CreateArc (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%,    X3%,    Y3%,    X4%,   
Y4%) As Long
SCreateArc (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#,    X3#,    Y3#,    X4#,   
Y4#) As Long

X1: x-coordinate of the upper-left corner of the bounding rectangle.
Y1: y-coordinate of the upper-left corner of the bounding rectangle.
X2: x-coordinate of the lower-right corner of the bounding rectangle.
Y2: y-coordinate of the lower-right corner of the bounding rectangle.
X3: x-coordinate of the point that defines the arc's starting point.
Y3: y-coordinate of the point that defines the arc's starting point.
X4: x-coordinate of the point that defines the arc's endpoint.
Y4: y-coordinate of the point that defines the arc's endpoint.

Points 3 and 4 do not have to lie exactly on the arc.

Draws an elliptical arc. The arc drawn by using the function is a segment of the ellipse
defined by the specified bounding rectangle. The actual starting point of the arc is the
point at which a ray drawn from the center of the bounding rectangle through the specified
starting point intersects the ellipse. The actual ending point of the arc is the point at which
a ray drawn from the center of the bounding rectangle through the specified ending point
intersects the ellipse. The arc is drawn in a counterclockwise direction using the current
border attributes.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle for the arc object.
Scaling

Chord
CreateChord (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%,    X3%,    Y3%,    X4%,   
Y4%) As Long
SCreateChord (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#,    X3#,    Y3#,    X4#,   
Y4#) As Long

X1: Specifies the x-coordinate of the upper-left corner of the bounding rectangle.
Y1: Specifies the y-coordinate of the upper-left corner of the bounding rectangle.
X2: Specifies the x-coordinate of the lower-right corner of the bounding rectangle.
Y2: Specifies the y-coordinate of the lower-right corner of the bounding rectangle.
X3: Specifies the x-coordinate of the point that defines the chord's starting point.
Y3: Specifies the y-coordinate of the point that defines the chord's starting point.
X4: Specifies the x-coordinate of the point that defines the chord's endpoint.
Y4    Specifies the y-coordinate of the point that defines the chord's endpoint.

Draws a chord (a closed figure bounded by the intersection of an ellipse and a line
segment). The (x1, y1) and (x2, y2) parameters specify the upper-left and lower-right
corners, respectively, of a rectangle bounding the ellipse that is part of the chord. The (x3,
y3) and (x4, y4) parameters specify the endpoints of a line that intersects the ellipse. The
chord is drawn by using the current border, fill and background attributes. The figure
drawn by the Chord function extends up to, but does not include the right and bottom
coordinates. This means that the height of the figure is y2 - y1 and the width of the figure
is x2 - x1.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle for the chord.
Scaling

DrawText
CreateDrawText (PictureHandle&, Text$, Left%, Top%, Width%, Height%, Fmt%)
As Long
SCreateDrawText (PictureHandle&, Text$, Left#, Top#, Width#, Height#,    Fmt%)
As Long

Text:    the string to be drawn.
Top, Left, Width, Height: the rectangle in which the text is to be    formatted.
nFormat: the method of formatting the text.

Use OR to combine the following values to create the format:

DT_BOTTOM: bottom-justified text. This value must be combined with DT_SINGLELINE.
DT_CALCRECT: determines the width and height of the rectangle. If there are multiple lines
of text, DrawText will use the width of the rectangle specified and extend the base of the
rectangle to bound the last line of text. If there is only one line of text, DrawText will
modify the right side of the rectangle so that it bounds the last character in the line. In
either case, DrawText returns the height of the formatted text but does not draw the text.
DT_CENTER: centers text horizontally.
DT_EXPANDTABS: Expands tab characters. The default number of characters per tab is
eight.
DT_EXTERNALLEADING: Includes the font's external leading in the line height. Normally,
external leading is not included in the height of a line of text.
DT_LEFT: Aligns text flush-left.
DT_NOCLIP: Draws without clipping. DrawText is somewhat faster when DT_NOCLIP is used.
DT_NOPREFIX: Turns off processing of prefix characters. Normally, DrawText interprets the
ampersand (&) mnemonic-prefix character as a directive to underscore the character that
follows, and the two-ampersand (&&) mnemonic-prefix characters as a directive to print a
single ampersand. By specifiying DT_NOPREFIX this processing is turned off.
DT_RIGHT: Aligns text flush-right.
DT_SINGLELINE: Specifies single line only. Carriage returns and linefeeds do not break the
line.
DT_TABSTOP: Sets tab stops. The high-order byte of nFormat is the number of characters
for each tab. The default number of characters per tab is eight.
DT_TOP: Specifies top-justified text (single line only).
DT_VCENTER: Specifies vertically centered text (single line only).
DT_WORDBREAK: Specifies word-breaking. Lines are automatically broken between words
if a word would extend past the edge of the rectangle specified by lpRect. A carriage
return-linefeed sequence will also break the line.

Note that the values DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL, DT_NOCLIP,
and DT_NOPREFIX cannot be used with the DT_TABSTOP value.

Draws formatted text in the rectangle specified. It formats text by expanding tabs into
appropriate spaces, aligning text to the left, right, or center of the given rectangle, and
breaking text into lines that fit within the given rectangle. The type of formatting is
specified by nFormat. This member function uses the device context's selected font, text
color, and background color to draw the text. Unless the DT_NOCLIP format is used,
DrawText clips the text so that the text does not appear outside the given rectangle. All
formatting is assumed to have multiple lines unless the DT_SINGLELINE format is given. If
the selected font is too large for the specified rectangle, the DrawText member function
does not attempt to substitute a smaller font. If the DT_CALCRECT flag is specified, the
rectangle specified will be updated to reflect the width and height needed to draw the text.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.    You can access Width and Height using these functions by treating them as
X2, Y2.

Returns: The handle of the DrawText object.
Scaling

Ellipse
CreateEllipse (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%) As Long
SCreateEllipse (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#) As Long

X1:    x-coordinate of the upper-left corner of the ellipse's bounding rectangle.
Y1: y-coordinate of the upper-left corner of the ellipse's bounding rectangle.
X2: x-coordinate of the lower-right corner of the ellipse's bounding rectangle.
Y2: y-coordinate of the lower-right corner of the ellipse's bounding rectangle.

Draws an ellipse. The center of the ellipse is the center of the bounding rectangle specified
by x1, y1, x2, and y2. The ellipse is drawn with the current border, fill and background
attributes. The figure drawn by this function extends up to but does not include the right
and bottom coordinates. This means that the height of the figure is y2 - y1 and the width
of the figure is x2 - x1. If either the width or the height of the bounding rectangle is 0, no
ellipse is drawn.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle of the ellipse object.
Scaling

Line
CreateLine (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%) As Long
SCreateLine (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#) As Long

X1: x-coordinate of the startpoint for the line.
Y1: y-coordinate of the startpoint for the line.
X2:    x-coordinate of the endpoint for the line.
Y2:    y-coordinate of the endpoint for the line.

Draws a line from the startpoint up to, but not including, the endpoint. The line is drawn
with the current border attributes.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle of the line object.
Scaling

Polygon (Empty)
CreatePolygon (PictureHandle&) As Long
SCreatePolygon (PictureHandle&) As Long

Creates an empty polygon.

Points may be added or deleted using AddPoint (SAddPoint), InsertPointAt (SInsertPointAt),
RemovePointAt, RemoveAllPoints.    Points may be changed by using SetX (SSetX) and SetY
(SSetY).

Return Value: The handle of the polygon object.
Scaling
Setting & Getting Points
Other Editing

Polygon (VB Array)
BCreatePolygon (PictureHandle&, ThePoints() As PointAPI) As Long
SBCreatePolygon (PictureHandle&, ThePoints() As ScalePointApi) As Long

ThePoints: vertices of the polygon as a VB dynamic array.

Draws a polygon consisting of two or more points (vertices) connected by lines, using the
current border, fill and background attributes. The system closes the polygon
automatically, if necessary, by drawing a line from the last vertex to the first.

ThePoints is created in VB by
Dim ThePoints() as PointApi ' or ScalePointApi

and later
Redim ThePoints(MaxIndex)

where MaxIndex is the number of points minus 1.

Changing the data in the VB array will change the appearance of the polygon the next
time it is drawn.    Note that you must call DoScale against the polygon, or a containing
picture, after changing the data in order to reflect the changes.

Return Value:    The handle of the polygon object.
Scaling

Pie
CreatePie (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%,    X3%,    Y3%,    X4%,   
Y4%) As Long
SCreatePie (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#,    X3#,    Y3#,    X4#,   
Y4#) As Long

X1: x-coordinate of the upper-left corner of the bounding rectangle.
Y1: y-coordinate of the upper-left corner of the bounding rectangle.
X2: x-coordinate of the lower-right corner of the bounding rectangle.
Y2: y-coordinate of the lower-right corner of the bounding rectangle.
X3: x-coordinate of the arc's starting point.
Y3: y-coordinate of the arc's starting point.
X4: x-coordinate of the arc's endpoint.
Y4: y-coordinate of the arc's endpoint.

Points 3 and 4 do not have to lie on the arc.

Draws a pie-shaped wedge by drawing an elliptical arc whose center and two endpoints
are joined by lines. The center of the arc is the center of the bounding rectangle specified
by x1, y1, x2, and y2 . The starting and ending points of the arc are specified by x3, y3,
x4, and y4). The arc is drawn with the current border attributes, moving in a
counterclockwise direction. Two additional lines are drawn from each endpoint to the arc's
center. The pie-shaped area is filled with the fill and background attributes. If x3 equals x4
and y3 equals y4, the result is an ellipse with a single line from the center of the ellipse to
the point (x3, y3) or (x4, y4).

The figure drawn by this function extends up to but does not include the right and bottom
coordinates. This means that the height of the figure is y2 - y1 and the width of the figure
is x2 - x1.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle of the Pie.
Scaling

PolyLine (Empty)
CreatePolyLine (PictureHandle&) As Long
SCreatePolyline (PictureHandle&) As Long

Creates an empty polygon.

Points may be added or deleted using AddPoint (SAddPoint), InsertPointAt (SInsertPointAt),
RemovePointAt, RemoveAllPoints.    Points may be changed by using SetX (SSetX) and
SetY(SSetY).

Return Value: The handle of the polygon object.
Scaling
Setting & Getting Points
Other Editing

PolyLine (VB Array)
BCreatePolyLine (PictureHandle&, ThePoints() As PointAPI) As Long
SBCreatePolyline (PictureHandle&, ThePoints() As ScalePointApi) As Long

ThePoints:      A Redim-ed VB array of points to be connected.

Draws a set of line segments connecting the points specified by ThePoints. The lines are
drawn from the first point through subsequent points using the current border attributes.

ThePoints is created in VB by
Dim ThePoints() as PointApi ' or ScalePointApi

and later
Redim ThePoints(MaxIndex)

where MaxIndex is the number of points minus 1.

Changing the data in the VB array will change the appearance of the polyline the next time
it is drawn.    Note that you must call DoScale against the polyline, or a containing picture,
after changing the data in order to reflect the changes.

Return Value: The handle of the polyline object.

Scaling

PolyPolygon (Empty)
CreatePolyPolygon (PictureHandle&) As Long
SCreatePolyPolygon (PictureHandle&) As Long

Creates an empty polypolygon.    This will consist of a collection of points and a collection
of vertex-counts (1 count for each polygon).

Points may be added or deleted using AddPoint (SAddPoint), InsertPointAt (SInsertPointAt),
RemovePointAt, RemoveAllPoints.    Points may be changed by using SetX (SSetX) and SetY.

Counts may be added or deleted using AddPolyCount, SAddPolyCount, InsertPolyCountAt,
RemovePolyCountAt, RemoveAllPolyCounts.    Points may be changed by using
SetPolyCount.

There are symmetric "get" functions for the "set:" functions referred to above.

Return Value: The handle of the polypolygon object.
Scaling
Setting &Getting Points
Other Editing

PolyPolygon (VB Arrays)
BCreatePolyPolygon (PictureHandle&, ThePoints() As PointAPI, Polycounts%())
As Long
SBCreatePolyPolygon (PictureHandle&, ThePoints() As ScalePointApi,
Polycounts%()) As Long

ThePoints:    A Redim-ed VB array of points that define the vertices of the polygons.
PolyCounts:    A Redim-ed VB array of integers, each of which specifies the number of
points in one of the polygons in the ThePoints array.

Creates two or more polygons using the current border, fill and background attributes. The
polygons may be disjoint or overlapping. Each polygon specified in a call to the
PolyPolygon function must be closed in order to be filled. Unlike polygons created by the
Polygon functions, the polygons created by PolyPolygon are not closed automatically.

ThePoints is created in VB by
Dim ThePoints() as PointApi ' or ScalePointApi

and later
Redim ThePoints(MaxIndex)

where MaxIndex is the number of points minus 1.

PolyCounts is set up similarly (but as integer).

Changing the data in the VB arrays will change the appearance of the polyline the next
time it is drawn.    Note that you must call DoScale against the polyline, or a containing
picture, after changing the data in order to reflect the changes.

Return Value: The handle of the polypolygon object.
Scaling

Rectangle
CreateRectangle (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%) As Long
SCreateRectangle (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#) As Long

X1: x-coordinate of the upper-left corner of the rectangle.
Y1: y-coordinate of the upper-left corner of the rectangle.
X2: x-coordinate of the lower-right corner of the rectangle.
Y2: y-coordinate of the lower-right corner of the rectangle.

Draws a rectangle using the current border, fill and background attributes.    The rectangle
extends up to, but does not include, the right and bottom coordinates. This means that the
height of the rectangle is y2 - y1 and the width of the rectangle is x2 - x1.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle of the rectangle object.
Scaling

RoundRect
CreateRoundRect (PictureHandle&,    X1%,    Y1%,    X2%,    Y2%,    X3%,    Y3%) As
Long
SCreateRoundRect (PictureHandle&,    X1#,    Y1#,    X2#,    Y2#,    X3#,    Y3#) As
Long

X1: x-coordinate of the upper-left corner of the rectangle.
Y1: y-coordinate of the upper-left corner of the rectangle.
X2: x-coordinate of the lower-right corner of the rectangle.
Y2: y-coordinate of the lower-right corner of the rectangle.
X3: width of the ellipse used to draw the rounded corners.
Y3: height of the ellipse used to draw the rounded corners.

Draws a rectangle with rounded corners using the current border, fill and background
attributes.    The figure this function draws extends up to but does not include the right and
bottom coordinates. This means that the height of the figure is y2 - y1 and the width of the
figure is x2 - x1.

You can later set or get the coordinates using SetX/Y-GetX/Y or SSetX/Y-SGetX/Y
respectively.

Return Value: The handle of the RoundRect object.
Scaling

TextOut
CreateTextOut (PictureHandle&,    X1%,    Y1%,    NewText$) As Long
SCreateTextOut (PictureHandle&,    X1#,    Y1#,    NewText$) As Long

X1: x-coordinate of the starting point of the text.
Y1: y-coordinate of the starting point of the text.
NewText: The character string to be drawn.

Writes a character string at the specified location using the current    font. Character
origins are at the upper-left corner of the character cell.

Return Value: The handle of the text object.
Scaling

TabbedTextOut
BCreateTabbedTextOut (PictureHandle&,    X%,    Y%,    NewText$,   
TabStopPositions%(),    TabOrigin%) As Long
SBCreateTabbedTextOut (PictureHandle&,    X#,    Y#,    NewText$,    ,
TabStopPositions#(),    TabOrigin#) As Long

X: x-coordinate of the starting point of the string.
Y: y-coordinate of the starting point of the string.
NewText: the character string to draw.
TabStopPositions:    Redim-ed VB array containing the tab-stop positions.
nTabOrigin: x-coordinate of the starting position from which tabs are expanded.

Writes a character string at the specified location, expanding tabs to the values specified
in the array of tab-stop positions. Text is written in the current font.

The tab stops must be sorted in increasing order; the smallest x-value should be the first
item in the array

Return Value: The handle of the TabbedText object.
Scaling

PolyTextOut (Empty)
CreatePolyTextOut (PictureHandle&) As Long
SCreatePolyTextOut (PictureHandle&) As Long

Creates an empty PolyTextOut object.

Items may be added or deleted using AddPText, SAddPText, InsertPTextAt, SInsertPTextAt,
RemovePTextAt, RemoveAllPText.    Points may be changed by using SetX/Y or SSetX/Y.

Return Value: the handle of the polytext object.

Scaling
Setting and Getting Points
Other Editing

PolyTextOut (VB Arrays)
BCreatePolyTextOut (PictureHandle&, ThePoints() As PointAPI, OutText$()) As
Long
SBCreatePolyTextOut (PictureHandle&, ThePoints() As ScalePointApi, OutText$
()) As Long

ThePoints: a redim-ed VB array of points
OutText: a redim-ed VB array of strings

Writes the strings at the points specified using the current font attributes.

Return Value: The handle of the polytext object.
Scaling

Shapes
Arc
Chord
Ellipse
Line
Pie
Polygon
Polygon (VB array)
Polyline
Polyline (VB array)
PolyPolygon
PolyPolygon (VB Arrays)
Rectangle
RoundRect

BorderWidth
SetBorderWidth GraphicHandle&,    PenWidth%
GetBorderWidth (GraphicHandle&) as Integer

Sets (gets) the width for the border of shapes.    In the case of a line/polyline, this is the
thickness of the line.    If positive, PenWidth is the width in pixels.    If it is negative, then it
is scaled according to the scale of the immediately containing picture.

You can set the border width of a picture, as opposed to a shape.

If you set this attribute, then the specified border width will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the border width of the
drawing device will be set back to the value it had before drawing that object.

Drawing Sequence
Consider the code:

Picture2 = CreatePicture(Picture1)
Line1 = CreateLine(Picture1, 0, 0, 10, 10)
Line2 = CreateLine(Picture2, 0, 0, 10, 10)

The picture with handle Picture2 is created by and logically contained in Picture1 (although
its physical placement is not necessarily within that of Picture1).

DoPaint commences drawing with the first global picture created (which is the default
global picture automatically created for each instance of the VBX).    DoDraw commences
from the picture specified.    Within a picture, objects are drawn in the order they were
created, subject to the fact that if an object is in turn a picture, then all the objects
contained in that picture are drawn before proceeding to the next object..

In the above example, the objects are drawn in the following sequence:

1. Picture1
2. Picture2
3. Line2
4. Line1

FastGraph v 0.9 (Beta)
(C) Decision Management Software CC 1994

Contents
 Introduction

 Pictures

 Shapes
 Drawing Attributes

 Text
 Font Attributes

 Drawing Sequence
 Restoring Drawing and Font Attributes

 Scaling, Drawing, Printing
 Conversion & Measuring

Using FastGraph from VB
Technical Support

Drawing Attributes
Drawing attributes consist of border, background, fill and mode attributes.
They apply to all shapes.
Border
 BorderColor
 BorderStyle
 BorderWidth
Background
 BackColor
 BackStyle
Fill
 FillColor
 FillStyle
Mode
 DrawMode

BorderColor
SetBorderColor GraphicHandle&,    crColor&
GetBorderColor (GraphicHandle&) as Long

Sets (gets) the border color.    This is an RGB color such as returned by the VB functions
RGB and QBColor.

You can set the border color of a picture, as opposed to a shape.

If you set this attribute, then the specified border color will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the border color of the
drawing device will be set back to the value it had before drawing that object.

BorderStyle
Sub SetBorderStyle GraphicHandle&,    nPenStyle%
GetBorderStyle (GraphicHandle&) as Integer

Sets (gets) the border style for an object.    nPenstyle may have the following values:

 0 - Solid
 1 - Dash
 2 - Dot
 3 - Dash Dot
 4 - Dash Dot Dot
 5 - Transparent
 6 - Inside Solid

You can set the border style of a picture, as opposed to a shape.

If you set this attribute, then the specified border style will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the border style of the
drawing device will be set back to the value it had before drawing that object.    If the
border width is non-zero, the style is always drawn as Solid.

BackColor
SetBackColor GraphicHandle&,    crColor&
GetBackColor (GraphicHandle&) as Long

Sets (gets) the background color.    This is an RGB color such as returned by the VB
functions RGB and QBColor.

You can set the background color of a picture, as opposed to a shape.

If you set this attribute, then the specified background color    will be set into the drawing
device when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the background color
of the drawing device will be set back to the value it had before drawing that object.

BackStyle
SetBackStyle GraphicHandle&,    BackStyle%
GetBackStyle (GraphicHandle&) as Integer

Sets (gets) the background style for an object.    BackStyle may have the following values:

 1 - Transparent
 2 - Opaque

If you set this attribute, then the specified background style will be set into the drawing
device when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the background style of
the drawing device will be set back to the value it had before drawing that object.

FillColor
SetFillColor GraphicHandle&,    crColor&
GetFillColor (GraphicHandle&) as Long

Sets (gets) the fill color.    This is an RGB color such as returned by the VB functions RGB
and QBColor.

You can set the fill color of a picture, as opposed to a shape.

If you set this attribute, then the specified fill color    will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the fill color of the
drawing device will be set back to the value it had before drawing that object.

FillStyle
SetFillStyle GraphicHandle&,    FillStyle%
SetFillStyle (GraphicHandle&,    FillStyle%) as Integer

Sets (gets) the fill style for an object.    FillStyle may have the following values:

 0 - Solid
 1 - Hollow
 2 - Horizontal Lines
 3 - Vertical Lines
 4 - Upward Diagonal
 5 - Downward Diagonal
 6 - Cross
 7 - Diagonal Cross

If you set this attribute, then the specified fill style will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If the FillStyle is Hollow and the BackStyle is Opaque, objects are filled with the BackColor.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the fill style of the
drawing device will be set back to the value it had before drawing that object.

DrawMode
SetDrawMode GraphicHandle&,    DrawMode%
GetDrawMode (GraphicHandle&) as Integer

Sets (gets) the draw mode for an object.    DrawMode may have the following values:

[Pen means the current border or fill color, depending on whether the border is being
drawn or the shape is being filled]

1 Black Pen.
2 Inverse of setting 15 (Merge Pen) - NotMergePen.
3 Combination of the colors common to the background color and the inverse

of the pen - MaskNot Pen.
4 Inverse of setting 13 (Copy Pen) - NotCopyPen.
5 Combination of the colors common to both the pen and the inverse of the

display - MaskPenNot.
6 Inverse of the display - colorInvert.
7 Combination of the colors in the pen and in the display color, but not in both

 - XorPen.
8 Inverse of setting 9 (Mask Pen) - NotMaskPen.
9 Combination of the colors common to both the pen and the display

- MaskPen.
10 Inverse of setting 7 (Xor Pen) - NotXorPen.
11 No operation - output remains unchanged.    In effect, this setting turns drawing

off - Nop.
12 Combination of the display color and the inverse of the pen color
 - MergeNotPen.
13 (Default) Color specified by the Border/Fill color - CopyPen.
14 Combination of the pen color and the inverse of the display color

 - MergePenNot.
15 Combination of the pen color and the display color - MergePen.
16 White Pen.

If you set this attribute, then the specified draw mode will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the draw mode of the
drawing device will be set back to the value it had before drawing that object.

Text Objects
DrawText
PolyTextOut
PolyTextOut (VB Arrays)
TabbedTextOut (VB Arrays)
TextOut

Scaling Considerations
SCreateXXX,    SSetXXX, SAddXXX and SInsertAtXXX functions take coordinates/dimensions
in the scale of the picture in which the object is created; you must call DoScale against the
handle of the object created, or a parent/ancestor picture handle, before the object is
drawn by DoDraw or DoPaint.      CreateXXX functions create pixel-based objects with
coordinates given in pixels relative to the top-left of the device in which the object is
drawn, and dimensions in pixels.

FontHeight
SetFontScaleHeight GraphicHandle&,    dHeight#
GetFontScaleHeight (GraphicHandle&) as Double

SetFontPixelHeight GraphicHandle&,    Height%
GetFontPixelHeight (GraphicHandle&) as Integer

SetFontPointHeight GraphicHandle&,    Height%
GetFontPointHeight (GraphicHandle&) as Integer

Sets (gets) the height of the font in the scale of a picture, in pixels, or in points .

GraphicHandle is the handle of a picture or text object.

If ScaleHeight is used, the height of the font is expressed in the scale of the picture, if
GraphicHandle is the handle of a picture, or the scale of the containing picture if it is not.

If the height is positive, then it specifies the height of the font including leading; if it is
negative then it sets the actual height of the characters, excluding leading.

If you set this attribute, then the specified font height    will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a text
object or picture object, then after drawing that object, the font height of the drawing
device will be set back to the value it had before drawing that object.

FontEscapement (Rotation)
SetFontEscapement GraphicHandle&,    nEscapement%
GetFontEscapement (GraphicHandle&) as Integer

Sets (gets) the anti-clockwise rotation of the text from horizontal, in tenths of a degree.

GraphicHandle is the handle of a picture or text object.

If you set this attribute, then the specified escapement    will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a    text
object or picture object, then after drawing that object, the font escapement of the
drawing device will be set back to the value it had before drawing that object.

FontWeight
SetFontWeight GraphicHandle&,    nWeight%
GetFontWeight (GraphicHandle&) as Integer

Sets (gets) the weigh of the font.

GraphicHandle is the handle of a picture or text object.

nWeight has one of the following values:

FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The actual appearance of the font depends on the type face. Some
fonts have only FW_NORMAL, FW_REGULAR, and FW_BOLD
weights

If you set this attribute, then the specified font weight will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a    text
object or picture object, then after drawing that object, the font weight of the drawing
device will be set back to the value it had before drawing that object.

FontItalic
SetFontItalic GraphicHandle&,    nItalic%
GetFontItalic (GraphicHandle&)

Sets (gets) the italic attribute.

GraphicHandle is the handle of a text or picture object.    nItalic should be set to True for
italicized text, False otherwise.

If you set this attribute, then the specified italic attribute    will be set into the drawing
device when the object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a    text
object or picture object, then after drawing that object, the italic attribute of the drawing
device will be set back to the value it had before drawing that object.

FontUnderline
SetFontUnderline GraphicHandle&,    nUnderline%
GetFontUnderline (GraphicHandle&) as Integer

Sets (gets) the underline attribute.

GraphicHandle is the handle of a text or picture object. nUnderline should be set to True
for underlined text, False otherwise.

If you set this attribute, then the specified underline attribute    will be set into the drawing
device when the object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a    text
object or picture object, then after drawing that object, the underline attribute of the
drawing device will be set back to the value it had before drawing that object.

FontStrikeOut
SetFontStrikeOut GraphicHandle&,    nStrikeOut%
SetFontStrikeOut (GraphicHandle&) as Integer

Sets (gets) the strikeout attribute.

GraphicHandle is the handle of a text or picture object.    nStrikeOut should be set to True
for struck-out    text, False otherwise.

If you set this attribute, then the specified strikeout attribute    will be set into the drawing
device when the object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a    text
object or picture object, then after drawing that object, the strikeout attribute of the
drawing device will be set back to the value it had before drawing that object.

FontFaceName
SetFontFaceName GraphicHandle&,    FaceName$
GetFontFaceName (GraphicHandle&) as String

Sets (gets) the font's face name (corresponds to VB's FontName).

GraphicHandle is the handle of a text or picture object.    FaceName is set to a value such
as "Arial"..

RetStr must be long enough to contain the returned font name.    The returned value is
null-terminated, so WHY NOT JUST INCLUDE A COVER FUNCTION THAT DOES

Left(RetStr, Instr(RetStr, Chr(0)) - 1)

If you set FontFaceName for an object, then it    will be set into the drawing device when
that object is drawn.

If you do not explicitly set this attribute, then the text is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a    text
object or picture object, then after drawing that object, this attribute of the drawing device
will be set back to the value it had before drawing that object.

FontColor
SetFontColor (GraphicHandle&,    crColor&)
GetFontColor (GraphicHandle&) as Long

Sets (gets) the font color.    crColor is an RGB color such as returned by the VB functions
RGB and QBColor.

GraphicHandle is the handle of a text object or a picture.

If you set this attribute, then the specified font color will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the shape is drawn using the last value set in
the drawing sequence.

If you set the PreserveAttributes property to True    (see SetPreserveAttributes) for a shape
object, text object or picture object, then after drawing that object, the font color of the
drawing device will be set back to the value it had before drawing that object.

Font Attributes
FontColor
FontEscapement
FontFaceName
FontHeight
FontItalic
FontStrikeOut
FontUnderline
FontWeight

FastGraph v 0.9
What is FastGraph?
FastGraph is a Visual Basic custom control (VBX) that gives the VB developer much of the
power of the Windows GDI API, while maintaining the simplicity of VB metaphors.

Its main advantages over calling the GDI directly are:

FastGraph uses an object-based metaphor with properties for graphic objects (such as
FontItalic, Visible, FillStyle, BorderWidth) that are identical in name and semantics to those
used in VB controls where possible.    Where this is not posible, Fastgraph extends the
familiar VB properties a natural way such as FontEscapement (rotation).

FastGraph provides support for scaling and positioning pictures using the Top, Left, Width,
Height, ScaleTop, ScaleLeft, ScaleWidth, ScaleHeight attributes familiar to VB developers.   
A FastGraph picture can contain other FastGraph pictures, each with different coordinate
and placement    systems.

FastGraph pictures can be drawn to the screen or printer, create a metafile or copy
themselves to the clipboard - each with a single, simple function call.

FastGraph is VB aware, so you can create objects such as PolyText, PolyLine, and
PolyPolygon using native VB dynamic arrays for maximum speed and convenience.
In comparison with VB's Print, Line and Ellipse, FastGraph creates persistent objects that
can be drawn to whatever target is required. Compute-intensive operations such as scaling
are performed for you by highly optimized C code.

Set X, Y Properties
SetX GraphicHandle&, Idx%, X%
GetX (GraphicHandle&, Idx%) as Integer
SetY GraphicHandle&, Idx%, X%
GetY (GraphicHandle&, Idx%) as Integer
SSetX GraphicHandle&, Idx%, X#
SGetX (GraphicHandle&, Idx%) as Double
SSetY GraphicHandle&, Idx%, X#
SGetY (GraphicHandle&, Idx%) as Double

Sets (gets) points in Polygon, PolyLine, PolyTextOut etc.    Idx specifies the index of the
point required.    Can also be used to get the coordinates for non-poly objects - Idx set to 0
will return X1/ Y1, to 1 will return X2/Y2 and so on.

Converting Between Pixel and Scale
ToScaleXY PicHandle&, X#, Y#
ToPhysicalXY PicHandle&, X#, Y#
ToScaleWH PicHandle&, W#, H#
ToPhysicalWH PicHandle&, W#, H#

Convert a pixel position to the scaled coordinates of the picture, and vice-versa.

Similarly for width and height.

Text Width/Height
GetTextWidth (pictureHandle&, hDC%, Text$) As Integer
GetTextHeight (pictureHandle&, hDC%, Text$) As Integer
GetScaleTextWidth (pictureHandle&, hDC%, Text$) As Double
GetScaleTextHeight (pictureHandle&, hDC%, Text$) As Double

hDC: handle to a device context
Text: the string to be measured

Returns the width/height of a string as it would be drawn in a particular device context in
either pixels or the scale of the picture.

Be sure to set the required font attributes into the picture before calling this function.

Scale-Left, -Top, -Width, -Height
SetScale (pictureHandle&, WorldLeft#, WorldTop#, WorldWidth#,   
WorldHeight#

WorldLeft: x-coordinate that will map to Left in picture's placement.
WorldTop: y-coordinate that will map to Top in picture's placement.
WorldWidth: x-distance that will map to Width of picture's placement.
WorldHeight: y-distance that will map to Height of picture's placement.

Together with SetPlacement, this determines how scaled objects (those created using
SCreate...) will be converted to pixels for drawing.

After calling this function, you must call DoScale against the the picture or an ancestor
picture before calling DoPaint or DoDraw.

Left, Top, Width, and Height
SetPlacement pictureHandle&, Left#, Top#, Width#, Height#

Specifies the position, width and height corresponding to the scale values set by SetScale. 
Left, Top, Width and Height should be given in the scaling system of the containing picture
if the picture being placed is not a global picture, or in pixels if it is a global picture.

Conversion & Measuring
Converting between pixel and scale coordinates/distances
Measuring text

Pictures
Creating Pictures
Scaling and Drawing

Scaling, Drawing, Printing Pictures
SetScale
SetPlacement
DoScale
DoPaint
DoDraw
IsScaleable

Realizing Scale Objects
DoScale GraphicHandle&

The pixel-based data required for actually drawing objects is not calculated until you call
DoScale.    DoScale creates the physical representation for all objects in a picture, recursing
through any pictures contained in the one for which DoScale was called.    It can also be
called for a shape or text object, in which case just data for that object is computed.

After changing size/position attributes of an object, you must ensure that DoScale is called
against that object, its parent    picture, or an ancestor picture before calling DoPaint or
DoDraw.

Painting to the Default Window
DoPaint (ByVal pictureHandle&)
Fastgraph controls have a property called DrawhWnd.    By default this is the hWnd of the
form on which the control is placed.    Calling DoPaint causes the picture (and all its
descendent pictures) to be drawn to the window specified by DrawhWnd.    You can change
the DrawhWnd property by assigning it the hWnd property of another VB control.    If you
wish to draw to an object that does not have an hWnd property, then you should use the
DoDraw procedure.

DoPaint would normally be called in the Paint Event of the object in which the graphic is to
be drawn

Drawing to an Arbitrary Device Context
DoDraw GraphicHandle&, TheHDC%

TheHDC: handle to a device context

Draws the specified shape, text or picture (and all its descendant pictures) to the specified
device context.

This can be used to draw the picture on any VB object with an hDC property.    Specifically,
it is used to print a picture, as in this code segment:

Printer.ScaleMode = 3 ' Set to pixels so the next line does what's required
SetPlacement FG1 Printer.Left, Printer.Top, Printer.Width, Printer.Height

'...    Alternatively to whatever placement    is required
DoScale FG1 'Calculate pixel positions
Printer.Print "" 'NB:    Initialize printer
DoDraw FG1, Printer.hDC
Printer.EndDoc
SetPlacement FG1 Me.Left, Me.Top, Me.Width, Me.Height

'Assuming this is what it was originally
DoScale FG1 'Set pixel stuff back to what it was originally

Apart from printing, DoDraw would normally be called in the Paint Event of the object in
which the graphic is to be drawn.    It is also used during interactive drawing.

Creating Pictures
CreatePicture (pictureHandle&) As Long
CreateGlobalPicture () As Long
When an instance of the FastGraph control is created, a default global picture is
automatically created, and the handle to this global picture is the default property of the
instance of the control.

You can create pictures that are logically contained in the default picture by, for example:

SubPic1 = CreatePicture(FG1) 'FG1 is the Name of the FastGraph control

SubPic1 now contains the handle to a picture.    You can add shapes and text    to pictures
by, for example:

Line1 = CreateLine(FG1, 0, 0, 100, 100) 'Creates line in global picture
Line2 = CreateLine(SubPic1, 0, 0, 100, 100) 'Creates line in sub-picture

Should you need additional global pictures, these can be created by calling
CreateGlobalPicture.

Return Value: The handle of the picture created.
Scaling, Drawing, Printing

Deleting All Objects in a Picture
ClearAll pictureHandle&

Recursively removes all objects (including descendant pictures and their objects) from the
specified picture.    The specified picture itself is not deleted.

No drawing occurs.

Deleting a Graphic Object
RemoveObject TheHDC%, Mode%,    RemoveObject%, Color&
TheHDC: handle to a DC
Mode: type of drawing required
RemoveObject: the object to be removed
Color: the color for drawing

If Mode is zero, no drawing occurs - you can pass any value for TheHDC.

If mode is 1, the object is drawn to TheHDC using the color specified.      If most of the area
is one colour (e.g. a line drawing is mostly the windows background colour) then it is
visually effective to redraw the deleted object in that color, and subsequently redraw the
global picture without clearing the window.

If mode is 2, the object is drawn with its current attributes.    This visually erases the object
if it was originally drawn with a DrawMode such as XOR.

RemoveObject is set to True or False - it specifies whether the object should be deleted
from the picture, or just redrawn respectively.    If True, recursively removes all objects
(including descendant pictures and their objects) from the specified picture.    The specified
picture itself is ALSO deleted.

Color is the RGB color for drawing.

Editing PolyShapes
AddPoint GraphicHandle&, NewX%, NewY%
SAddPoint GraphicHandle&, NewX#, NewY#
GetNumPoints (GraphicHandle&) As Integer
RemoveAllPoints GraphicHandle&
InsertPointAt GraphicHandle&, nIndex%, NewX%, NewY%
RemovePointAt GraphicHandle&, nIndex%
SInsertPointAt GraphicHandle&, nIndex%, NewX#, NewY#
RemoveAllPolyCounts ByVal GraphicHandle&
SetPolyCount GraphicHandle&, nIndex%, nCount%
AddPolyCount GraphicHandle&, ByVal nNewCount%
InsertPolyCountAt GraphicHandle&, nIndex%, nNewCount%
GetNumPolyCounts (GraphicHandle&) As Integer
nIndex: Index into point or count array - 0 is the first element

These functions are used for editing polygons, polylines, and polypolygons which are NOT
created with VB arrays.    The PolyCount functions are    for polypolygons, which have both
a collection of points and a collection of PolyCounts.

SAddPoint and SInsertPointAt are for scaleable objects (created using SCreateXXX), while
there counterparts without the "S" prefix are for pixel-based objects (CreateXXX).

Editing PolyText
AddPText PolyTextHandle&, nNewX%, nNewY%, pNewText$
SAddPText PolyTextHandle&, dNewX#, dNewY#, pNewText$
SetPTextAt PolyTextHandle&, nIdx%, pNewText$
GetPTextAt (PolyTextHandle&, nIdx%) as String
RemoveAllPText PolyTextHandle&
InsertPTextAt TextHandle&, nIdx%, X%, Y%, pNewText
SInsertPTextAt PolyTextHandle&, nIdx%,    X#, Y#, pNewText$
RemovePTextAt ByVal PolyTextHandle&, ByVal nIdx%
nIdx: Index into polytext array - 0 is the first element

These functions are used for editing polytext objects which are NOT created with VB
arrays.

SAddPText and SInsertPTextAt are for scaleable objects (created using SCreateXXX), while
there counterparts without the "S" prefix are for pixel-based objects (CreateXXX).

Restoring Drawing & Font Attributes
SetPreserveAttribs GraphicHandle&, PreserveAttribs%
Use this procedure to set the PreserveAttribs property of a picture, shape or text objects.

When the object is drawn, any drawing or font attributes that you have explicitly set for
that object are set into the drawing device.

If PreserveAttribs is true, then the status of the drawing device is saved before setting
these attributes, and restored after drawing of the object completes.

FontWidth
SetFontScaleWidth GraphicHandle&,    dHeight#
GetFontScaleWidth (GraphicHandle&) as Double

SetFontPixelWidth GraphicHandle&,    Height%
GetFontPixelWidth (GraphicHandle&) as Integer

SetFontPointWidth GraphicHandle&,    Height%
GetFontPointWidth (GraphicHandle&) as Integer

Sets (gets) the width of the font in the scale of a picture, in pixels, or in points .

GraphicHandle is the handle of a picture or text object.

If ScaleHeight is used, the width of the font is expressed in the scale of the picture, if
GraphicHandle is the handle of a picture, or the scale of the containing picture if it is not.

If you set this attribute, then the specified font height    will be set into the drawing device
when the object is drawn.

If you do not explicitly set this attribute, then the system chooses an appropriate width for
the height used.

Using FastGraph from VB
You install FastGraph simply by placing the distribution files on your hard disk in whatever
directory is convenient.    We recommend that you keep a single copy of the VBX file in
your \Windows\System or equivalent directory.

To use FastGraph from VB you must use the File/Add File menu option in VB to add FG.VBX
and FGDEF.BAS to your project.

Be sure to distribute FG.VBX with your application.

Technical Support
Decision Management Software CC

Tel: 27 11 802-8846
Fax: 27 11 802-8889

Compuserve: 70750,1776

Postal: Box 998
Kelvin
2054
South Africa

Is Object Scaleable?
IsScaleable (GraphicHandle&) as Integer
Returns True if the object was create by ScreateXXX or SBCreate XXX type functions, in
which case it is scaled by DoScale according to the values set with SetScale and
SetPlacement.    Otherwise, returns False.

